Discrete mathematics in industry

David Allwright, Smith Institute

here are so many discrete mathematical problems arising

from all industrial sectors that it is difficult to know how to

begin to classify them. Naturally they often involve some
continuous aspect as well, arising from time or space or the physi-
cal variables in the real-world problem. For instance, consider the
error-detecting and error-correcting codes that are used in all the
digital communications we make each day. The construction of
these codes is a purely discrete problem, yet the reason why such
codes are needed arises from an underlying continuous problem
of signal transmission over a radio link or optical fibre, and the
probability distribution of errors in such transmissions. To give
another example, a timetabling problem or a resource allocation
problem will generally take a purely discrete form, yet it has
arisen from real-world continuous constraints such as how long it
takes a data packet to get from A to B, or a train, or a class of
schoolchildren. So, when 1 describe some discrete industrial
mathematics problems here, some of them also involve continu-
ous variables: but the characteristic feature in each case is that the
mathematically challenging part of the problem is essentially dis-
crete. The first two problems are industrial applications of graph
theory and illustrate, incidentally, that not all industrial graph
theory problems are the travelling salesman problem. The third
will be from combinatorial auctions of the kind used by Ofcom
for spectrum licences, and the fourth is a regulatory problem to
do with aircraft noise.

The two graph theory problems arise from channel assignment.
So we are thinking of a network of radio transmitters and receiv-
ers communicating with mobile devices in the surrounding area.
They might be the base stations of a phone network, communi-
cating with mobile phones in their area, or they might be wireless
access points for the WLAN in an office building, communicat-
ing with the laptops, printers and so onin the nearby rooms. Each
transmitter needs to operate on one of several available “chan-
nels”, which may. for instance, be different versions of a coding
system. Neighbouring transmitters need to use different channels
so that a device that is perhaps midway between them is able to
lock unambiguously onto one of the incoming signals despite
that fact that they are incident with similar intensity. There are
various other constraints in practice, depending on the particular
application, which we may think of as “non-interference” con-
straints. Finding a good channel assignment, that gives a good
quality of service to the users of the system, is an interesting dis-
crete problem in industrial mathematics that has been widely
studied in recent years. It is very closely related to graph colour-
ing, for we can think of the transmitters as the nodes of a graph,
and join 2 nodes when their cells are geographical neighbours.
Then if we think of the available channels as colours, of which we
have to assign one to each node, the simple constraint mentioned
earlier is that joined vertices must be different colours, i.e. we
have to produce a vertex-colouring of the graph. However, in
2005 Motorola brought to the UK Maths-in-Industry Study
Group this recolouring problem: suppose one channel assign-
ment is in operation and we wish to change to another, by chang-
ing one node at a time {1]. During this change, when some
transmitters have gone to their new channel and others are still
on the old, all the non-interference constraints must be satisfied.

How do we find an order of carrying out the changes that
achieves this ? To give some idea of the scale of this problem,
there might be 2000 nodes in the area in question, so the number
of possible orders to consider would be 2000! and it is way
beyond the wildest dreams of any computer to consider them one
by one. Nevertheless, the problem turns out to be tractable by
suitable combinations of ingenuity and heuristic methods. One
of the important considerations, as often in channel assignment
problems, is that the graph is not like a general random graph,
because of the underlying geography. If A and C are each neigh-
bours of B then it is much more likely than average that A and C
are neighbours. The theory of random geometric graphs has been
developed to study such situations [3] and there will undoubtedly
be further interesting discrete industrial mathematics problems
in this area.

The second graph theory problem is the one mentioned by John
Ockendon in his IMA Gold Medal Lecture printed in this issue,
and concerns the case of a WLAN network in a modern office
complex, where many different companies can be working in the
same building, each with its own “territory”. There are various
ways of reducing the risk of loss of security of com-
pany-confidential data, one of which is to arrange that walls and
ceilings between different territories have a special treatment,
“stealthy wallpaper”, that provides reasonable radio attenuation
at the relevant frequencies. However, it is still necessary that com-
panies whose territories are in face-to-fuce contact on opposite
sides of just one wall or tfloor-ceiling should be on different chan-
nels. Territories that are separated by two walls or floors, or that
touch only along an edge or at a corner can share a channel. In
general of course, arbitrarily many channels may be needed, but
whatif each territory is a cuboid aligned with a fixed set of Carte-
sian axes? It is not difficult to make an example that needs 6 chan-
nels, but Bruce Reed was able to show that in fact arbitrarily
many channels may still be needed in this case, and the construc-
tion goes as follows [2]. Given any integer k& we arrange blocks
such that if they can be coloured with k colours then all of the
colours are needed. We begin with a staircase of « blocks, called

Figure 1: Schemal

of part of the arrangement of cuboids to give an
adjacency graph needing at least k colours
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the 1-blocks. like the blocks labelled 1 in Figure 1. They all have
width | in the v-direction. length/; in the y-direction, and heights
1.2, ... ¢y where we shall define a, =2"r! (for eachr =1... .. k).
Welet b, =« / k. and a set of by, of the 1-blocks will be called a

ay - .
l-set. so there arc i, = k ]such 1-sets. Our “2-blocks™ are going

7.

to be of length/, =/, / n,\,./\For cach 1-set, we allocate a section of
length /5 in the y-direction, and arrange by /2 = a;_; 2-blocks as
illustrated in the Figure. So, if the 1-set starts with the 1-blocks
whose ends are shaded. we take them in order. temporarily label
them A.B.A.B.. . .. and for each consecutive pair A,B. we place a
2-block with its right face in contact with B and its left face verti-
cally above the left face of A. The total number of 2-blocks added
is therefore 1.a_y. since there are ay_; in each of the 1, sections.
The arrangements of the 3-blocks, 4-blocks etc. are going to be
obtained by a recursive iteration of this construction. So. con-
sider any particular set of «;,_; 2-blocks that have been
constructed in this way from a particular I-set. A set of
bj_y = a1 (k=1) of these 2-blocks will be called a 2-set. so
4
k-1
each 2-sct we allocate a section of length /3 and place
bj_1 12 = uy_>blocks of Type 3 that are arranged as shown in the
Figure. The total number of 3-blocks is therefore mn_ja;_o
since for each of the ny I-sets there are 7., 2-sets, and each of
those has «;_5 3-blocks placed in its section. This whole recursive
refinement process is repeated up to the k-blocks. so the result
looks totally unlike any real building, and the blocks become
extremely thin in the y-direction!

Now we have to describe the consequences of this arrangement
for the colouring problem. First, since there are @y 1-blocks, if
they are coloured in A colours, there must be some set of
by = ay 1k that are all the same colour, which we may call colour
1. Somewhere along the r-direction is the section of length /5
where those blocks were the 1-set, and therefore the 2-blocks are
arranged as shown in the Figure: So the 2-blocks in that section
must all avoid colour 1, and are therefore coloured using the k —1
colours 2. .. .. k. However, since there are ay,_; of these 2-blocks,
there must be some subset of by _; = aj_ / (k —1)of them thatare
all the same colour. which we may call colour 2. Somewhere along
our section of length /5 in the r-direction is the arrangements of
3-blocks that corresponds to this particular monochromatic
2-set. So within that section of length /5 the 3-blocks are arranged
as shown in the Figure. So the 3-blocks in that section must all
avoid colours I and 2, and are therefore coloured using the k& —2
colours 3.. ... k. Repeating this argument through cach stage of
the construction we see that in fact all k colours must be used, as
we wished to show.

The number of blocks in this construction is

there are ny._) = [ J such 2-sets. We let /3 =/, / ny_; and for

/\//\. =dy vy Ty dype o+ =g+ IY/\.X/\._I, (D

with X| = ¢ =2. One can then show that for k = 6, X;. < k" and
so the number of WLAN channels needed for  cuboid territories
can grow at least as “fast” as loglogn/ log log log n.

A third examplc of discrete mathematics in industry is in com-
binatorial auctions. and we can introduce this by contrasting first
a Dutch auction and an English auction. Suppose a single item is
being sold and there are 17 potential bidders, who are prepared to
pay up to uy. an. ... ¢, for it, and we shall label them to make
(< ds <...<u,. InaDutch auction, the asking price is gradu-
ally reduced until someone makes a bid, so the item will be sold to
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bidder n for price ¢,,. In an English auction, the asking price is
gradually raised until there is only one bidder, so the item will
still be sold to bidder n, but for price «,,_;. (In fact a,,_; + & but we
ignore € for this discussion along with the possibility of ties and
the different psychology of the two auctions.) The English
auction is thus in a certain sense economically fairer to the
buyers: no non-winning bidder can say to the seller, “Look, |
would have paid more for the item”, but the price is as low as pos-
sible subject to this constraint. If it is run as a sealed-bid auction
then it is called a second-price sealed-bid auction, or Vickrey
auction. Now consider the corresponding problem for a combi-
natorial auction such as Ofcom is using for spectrum licences.
Here the buyers submit sealed bids not just for one possible item
ata time. but a wholc table of bids for each combination of items
they are interested in. The scller then has two combinatorial
problems. The first is to find the combination of bids that maxi-
mizes the sum of the bid amounts subject to the available
numbers of items of the different kinds. The second is to find the
prices that are economically fair in the same sense as the English
auction. In other words, no subset of the non-winning bidders
should be able to say to the scller. “Look. if you had accepted
these bids of ours for those items. and the prices that you are
accepting from that subset of winning biddcrs for the remaining
items, then your revenue would have been greater.” But the
prices should be as low as possible subject to this constraint. The
need to verify this for different combinations of subsets of
bidders can easily lead to a combinatorial explosion unless it is
carried out carefully. These are not the only interesting discrete
mathematical problems that arise in the course of combinatorial
auctions, but they do illustrate the type.

Finally, an cxample illustrating a completely different regula-
tory problem with a discrete nature is that of aircraft noisc. The
regulations for aircraft noise (see for instance [4]) are based on
Effective Perceived Noise Level (EPNL) and this is defined in
terms of figures for the sound pressure levels SPL(/) in
third-octave bands indexed by / running from 1 to 24. (These are
in fact measured at 1 second intervals during takc-off and
landing but it is just the details within these figures for one
second that we are concerned with here.) The figures arc pro-
cessed to produce a perceived noise level PNL, and a tone correc-
tion C, which are added to produce a tone-corrected perceived
noise level PNLT. The PNL is produced by a detailed calcutation
from the SPL(/) using tables based on experiments that assessed
how annoying people find the noise from different bands, and it
1s @ monotonically increasing function of all the SPL(/). The
tone correction C is intended to account for the fact that if the
noise has a strong tonal component then it is more annoying. To
find C. one first calculates a set of values SPL”(j) called the
“Background sound pressure levels” that smooth out the SPL(/)
after removing any pronounced spectral irregularities. Then the
excesses F(i) = SPL(/)— SPL”(i) are calculated, converted to
some tone corrections C(7) and the maximum of those is the final
tone correction C. However, this has an unfortunate conse-
quence. Suppose that the maximum of C(i) occurs for i,,,. Then
C =C{i,,) can be reduced by reducing SPL(,,} —SPL"(/,,), and
the background SPL"(7,,) is a smoothed average of the SPL(J)
values for { near to /,,. So C(i,,) can be reduced by increasing
SPL(i,, 1) and SPL(,, +1). the sound pressure levels in the
bands either side of the maximum. It turns out that this can
decrease the penalty term C by more than the corresponding
increase in the PNL term. In other words an aircraft could



reduce its EPNL noise rating by judiciously increasing its noise
output in the bands either side of its peak band. The problem has
been introduced by the way the noise output is discretized into
the bands and then processed in this way. It seems unfortunate,
to say the least, that major international efforts on aircraft noise
reduction such as the Silent Aircraft Initiative may end up being ) _

assessed by an internationally agreed EPNL rating that has this : zlvcgf;e;zyfrlsgssl]lﬁ?;,e\l;;l\?;ei]t;idinl)ﬁfgfsgcylS;%medy Sl g
blemish in it. Let us hope that mathematicians can play a part in 2 Painting the office. Bruce Reed and David Allwright. To appear in

any future redrafting of these regulations, and others, to ensure Mahematissin dndpsiCorstidey

i 3 Random Geometric Graphs. Mathew Penrose. OUP, 2003,
that measures are monotonic where they should be. 4 Federal Aviation Regulations. Part 36—Noise Standards: Aircraft Type and

Airworthiness Certification.

Naturally I must apologise for this being such a small selection
from the great host of interesting discrete problems that arise
from industrial mathematics. I hope that others will present other
examples in future issues of Mathematics Today.
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